REACTION OF A FUNCTIONALIZED NITRONE WITH THIOCARBOXYLIC ACIDS. A NEW SYNTHESIS OF 5-ACYLAMINOTHIAZOLES

Kohji SUDA,* Hidetoshi FUKE, Fumio HINO, and Chino YIJIMA Department of Physical Chemistry, Meiji College of Pharmacy, 1-35-23, Nozawa Setagaya-ku, Tokyo 154

Reaction of N-(l-cyanoalkyl)- α -phenylnitrones with thiocarboxylic acids offers a simple new route to 2-phenyl-4-alkyl-5-acylaminothiazoles.

Thiazoles constitute a group of heterocycles of increasing interest and application in medicinal chemistry, and a great number of synthetic methods of the ring system have been developed. In this communication, we describe a new synthesis of 5-acylaminothiazoles utilizing a functionalized nitrone, N-(1-cyanoalky1)- α -phenylnitrones $(\underline{1})$, and thiocarboxylic acids.

The reaction of N-(1-cyanobuty1)- α -(p-chloropheny1)nitrone ($\underline{1d}$) (4.23 mmol) with thiobenzoic acid (8.5 mmol) was carried out in benzene (12 ml) at room temperature. After 3 days the solid precipitated was filtered and then recrystallized from benzene-hexane. The product was, in contrast with the reaction of $\underline{1}$ with thiols, $\underline{3}$) not an expected 5-benzoylthioimidazole ($\underline{3}$) but 2-(p-chloropheny1)-4-propy1-5-benzoylaminothiazole ($\underline{2d}$). From the filtrate another portion of $\underline{2d}$ was isolated by column chromatography (SiO₂, successive elution with benzene and benzene/AcOEt: 10/1). The thiazole derivatives ($\underline{2}$) obtained under analogous conditions (Method A) are shown in Table 1. Although several efficient procedures for the synthesis of 5-aminothiazoles have been developed, $\underline{1}$, $\underline{5}$) no authentic sample of $\underline{2}$ could be obtained by the known methods. Characterization of the structure is, therefore, based on the spectral data, $\underline{4}$) alternative synthesis, $\underline{6}$) and chemical reactivities of $\underline{2}$.

The formation of $\underline{2}$ under conditions of using no solvent (Method B) was rather rapid but the reaction was accompanied by the formation of α -(benzoylamino)thiocarboxamide ($\underline{4}$) as a side product. Method B is, however, more convenient than Method A for the reaction of nitrones ($\underline{1}$) with a branched alkyl group in R¹ because their reactions in benzene are extremely slow. Although the reaction mechanism is not yet clear, we assume that the reaction proceeds via initial 1,3-addition of thiocarboxylic acid to $\underline{1}$, cyclization of the adduct ($\underline{5}$) with concomitant sulfur-to-nitrogen migration of the acyl group, and the loss of water to give 2.

$$R^{1}-CH$$

$$N=CH-R^{2}$$

$$0$$

$$1$$

$$1$$

$$1$$

$$1$$

$$1$$

$$R^{3}COSH$$

$$R^{1}-CH$$

$$N-CH$$

$$HO$$

$$R^{2}$$

$$R^{1}-CH$$

$$R^{2}$$

Table 1. 2-Phenyl-4-alkyl-5-acylaminothiazoles ($\underline{2}$)

	R ¹	R ²	R ³	Method ^{a)}	Time/d	Mp θm/°C	Yield/%b)
<u>2a</u>	Pr ⁱ	Ph-CH ₃ (p)	Ph	В	2	168-169	41
<u>2b</u>	Pri	Ph	Ph	В	2	180-181	42
<u>2c</u>	Pr ⁱ	Ph-Cl(p)	Ph	A	3 weeks	201-202	48
<u>2d</u>	Pr ⁿ	Ph-Cl(p)	Ph	A B	3 15 h	178-179	68 63 (32) ^{c)}
<u>2e</u>	Pr ⁿ	Ph	Ph	В	20 h	139-140	54
<u>2f</u>	Pr^n	Ph-Cl(p)	СН3	A	3	235-236	40
<u>2g</u>	Et	Ph-Cl(p)	Ph	A B	4 20 h	183-184	62 52 (19) ^{c)}
<u>2h</u>	Et	Ph-OCH ₃	Ph	А	5	191	58
<u>2i</u>	Me	Ph-Cl(p)	Ph	Α	4	235	56
<u>2j</u>	Pr ⁱ	Ph-Cl(m)	Ph	A	3 weeks	189-190	40

a) A: $(\underline{1})$ /thioic acid = 0.35 M/0.71 M in benzene at r.t. B: $(\underline{1})$ /thioic acid = 1 mmol/3 mmol at 40 °C. b) Isolated yields. c) Yields of the corresponding thioamides, α -(p-chlorobenzoylamino)thiovaleramide $(\underline{4d})$ and α -(p-chlorobenzoylamino)thiobutyramide $(\underline{4g})$.

References

- 1) For comprehensive reviews, "Thiazole and Its Derivatives," ed by J. V. Metzger, in a series of "The Chemistry of Heterocyclic Compounds," ed by A. Weissberger and E. C. Tailor, Academic Press, New York (1979), Vol. 34, Parts 1 and 2.
- 2) K. Suda, E. Sekizuka, Y. Wakamatsu, F. Hino, and C. Yijima, Chem. Pharm. Bull., 33, 1297 (1985).
- 3) M. Masui, K. Suda, M. Yamauchi, and C. Yijima, J. Chem. Soc., Perkin Trans. 1, 1972, 1955.
- 4) $\underline{2d}$: Found: C, 63.92; H, 4.85; N, 7.75%. Calcd for $C_{19}H_{17}N_{2}OSCl$: C, 63.95; H, 4.80; N, 7.85%. MS (m/e) 356 (M⁺ for ^{35}Cl); UV (EtOH) 225, 329 nm; IR (KBr) 3260 (NH), 1641 cm⁻¹ (C=0); ^{1}H -NMR (CDCl₃) 8 1.05 (3H, t, CH₃), 1.88 (2H, m, CH₂-CH₂-Me), 2.79 (2H, t, CH₂-Et), 7.25-7.9 (9H, aromatic H), 7.98 (1H, s, NH).
- 5) A. H. Cook, Sir I. Heilbron, and A. L. Levy, J. Chem. Soc., <u>1947</u>, 1598;
 M. Sekiya and Y. Osaki, Chem. Pharm. Bull., <u>13</u>, 1319 (1965); Y. Tamura, T. Miyamoto, K. Shimooka, and T. Masui, ibid., <u>19</u>, 119 (1971).
- 6) Thiation of α -(benzoylamino)valeronitrile by Lawesson's reagent⁸⁾ followed by benzoylation can also afford $\underline{2e}$, though in poor yield (7.5%).
- 7) Desulfurization of $\underline{2d}$ with Raney nickel resulted in the decomposition of the aromatic ring system. This indicates that the sulfur atom is a member of the ring system.
- 8) S. Scheibye, B. S. Pedersen, and S. O. Lawesson, Bull Soc. Chim. Belg., <u>87</u>, 229 (1978). (Received April 27, 1985)